viernes, 30 de septiembre de 2011

Motocompresor hermético reciprocante o alternativo.

Moto compresor hermético reciprocante o alternativo.

Este componente, conocido también como unidad sellada, compresor o simplemente (e impropiamente así llamado) "motor", consiste en un conjunto compresor - motor, ensamblados bajo estrictas normas de limpieza y con tolerancias y ajustes de alta precisión y sujetos dentro de una carcaza soldada herméticamente la cual es previamente configurada habiéndose soldado eléctricamente a ella: un conector eléctrico de tres pines para la alimentación de las bobinas de marcha [M], arranque [A] y común [C] del motor; y unidos por soldadura fuerte un mínimo de tres (y un máximos de cinco) tubos destinados a conectar el compresor con el sistema de refrigeración en que vaya a ser empleado.

Fig. No. Motocompresor hermético de potencia fraccionaria.

• Rangos de aplicación.

Los compresores pueden clasificarse según su rango de aplicación, disposición para el arranque y gas refrigerante, en las siguientes familias:

Presión de retorno

Par de arranque

Gas refrigerante

Baja presión de retorno [LBP] (low back pressure)

Normal [LST] (low starting torque)

R12, R134a, R600a, R22, R502, R404A, R507, R290, etc.

Alto par de arranque [HST] (high starting torque)

Presión de retorno media [MBP] (middle back pressure)

Normal [LST] (low starting torque)

Alto par de arranque [HST] (high starting torque)

Presión de retorno alta [HBP] (high back pressure)

Normal [LST] (low starting torque)

Alto par de arranque [HST] (high starting torque)

Presión de retorno alta / aire acondicionado

Normal [LST] (low starting torque)

Presión de retorno comercial [CBP] (commercial back pressure)

Normal [LST] (low starting torque)

Alto par de arranque [HST] (high starting torque)

Donde se definen:

Rango de aplicación

Temperatura de evaporación

ºC

ºF

Baja presión [LBP]

-34.4~ -12.2

-30 ~ -10

Presión comercial [CBP]

-1708 ~ 10.0

0 ~ 50

Media / Alta presión MBP/HBP

-20.0 ~ 12.8

-4 ~ 55

Aire acondicionado / Alta presión HMP/AC

0.0 ~ 12.8

32 ~ 55

Par de arranque.

Normal [LST] (bajo par de arranque): No requiere capacitor de arranque y se diseña para que arranque cuando las presiones en el sistema alcanzan a equilibrarse en los valores máximos establecidos para cada gas refrigerante ya vistos más arriba en este mismo capítulo. Normalmente se emplean solo en sistemas que funcionan con tubo capilar. Pueden estar dotados de un capacitor de marcha, pero este sólo se emplea para aumentar la eficiencia del compresor. Ocasionalmente pueden encontrarse compresores con motores de bajo par de arranque a los cuales se ha conectado un capacitor de arranque para asistirlo cuando las condiciones de tensión de línea son bajas y dificultan el arranque. Esto aumenta el par de arranque aproximadamente un 30 ~ 50%, pero no logra el mismo efecto que se obtiene en un motor diseñado para alto par de arranque, donde este llega a ser 100% mayor que el de un motor de bajo par de arranque.

Alto par de arranque: El motor está diseñado para arrancar cuando se alimenta su bobina auxiliar a través de un capacitor de arranque cuyo valor de capacitancia es calculado para lograr el máximo par de arranque posible cuando se lo conecta con un bobinado de las características propias de ese motor. Montar un capacitor de otro valor no va a lograr el mismo efecto y puede provocar tensiones eléctricas mayores en las bobinas del motor. Están diseñados para aplicaciones en las cuales es impredecible conocer si las presiones del sistema alcanzarán el equilibrio mencionado más arriba, antes que el compresor reciba la señal de arranque, tal como aplicaciones comerciales donde la apertura de puerta del artefacto es frecuente.

El gas que se vaya a emplear en un determinado compresor determina, entre otras cosas, el torque de arranque necesario pues las presiones del sistema varían notablemente entre unos y otros y esto debe tenerse en cuenta al diseñar el motor correspondiente, también fija las limitaciones a tener en cuenta en función de las características de seguridad del gas (inflamable o no, entre otras) pues de ello depende el tipo de accesorios requeridos (normales o herméticamente sellados, etc.)

• Consideraciones particulares relacionadas con el rango de aplicación de un compresor.

En aplicaciones domésticas particularmente, es muy importante verificar que la presión de succión del compresor esté dentro del rango aceptable según su clasificación [LBP - MBP - HBP - AA] puesto que ello esta vinculado con la temperatura de retorno del gas y su efecto de contribución al enfriamiento del compresor. Una presión de retorno más elevada significa gas más caliente y menos enfriamiento. En algunos casos, el fabricante especifica un rango extendido de aplicación, o sea que el mismo compresor puede funcionar en LBP, MBP o HBP, con solo cambiar algunos componentes, tales como relé y protector térmico, pero antes de tomar la decisión de emplear un determinado tipo de compresor el técnico debe verificar las especificaciones del fabricante.

En refrigeración doméstica, la mejor presión de retorno posible, siempre y cuando se cumplan todos los requisitos de enfriamiento solicitados por la aplicación para la mercadería contenida, o sea, una vez lograda la temperatura de evaporación deseada, es la más baja presión posible, sin que en ninguna condición de trabajo esta llegue a alcanzar niveles de vacío.

• Capacidad del compresor.

Definamos primero las condiciones de medición de capacidad de un compresor establecidas por ASHRAE, que son las que emplean la gran mayoría de fabricantes de compresores para clasificar sus productos:

Temperaturas

ASHRAE

ºC / (ºF)

LBP

CBP

M/HBP

HBP/AC

Evaporación

-23,3 / (-10)

-6,7 / (20)

7,2 / (45)

7,2 / (45)

Condensación

54,4 / (130)

54,4 / (130)

54,4 / (130)

54,4 / (130)

Gas de retorno

32,2 / (90)

35,0 / (95)

35,0 / (95)

35,0 / (95)

Líquido

32,2 / (90)

46,1 / (115)

46,1 / (115)

46,1 / (115)

Ambiente

32,2 / (90)

35,0 / (95)

35,0 / (95)

35,0 / (95)

Estas son las condiciones de ensayo que deben ajustarse en el calorímetro donde se esté determinando la capacidad de un compresor. La capacidad frigorífica, medida en estas condiciones, es la que permite comparar dos compresores, cualquiera sea su fabricante. Normalmente se efectúa el ensayo a 60 Hz y a la tensión para la cual fue diseñado el motor. La capacidad equivalente a 50 Hz puede calcularse dividiendo la capacidad a 60 Hz por 60 y multiplicándola por 50 pues la capacidad es función del rendimiento volumétrico, que es proporcional a la velocidad del motor y puesto que la velocidad es proporcional a la frecuencia, la relación se mantiene para la capacidad.

La capacidad del compresor puede expresarse en Kcal/hr en el Sistema Internacional o Btu/hr en el sistema inglés, con la siguiente relación entre ellas:

1 Btu/hr = 0,252 kcal/hr = 252 cal/hr

La costumbre ha popularizado el uso del término HP para definir la capacidad de un compresor, denominación que tiene su origen histórico en la época de la máquina de vapor, de donde provienen las definiciones siguientes:

Media / Alta Presión de Evaporación [M/HBP] y Acondicionamiento de aire [HBP-AC]:

Capacidad en HP = (Capacidad frigorífica en Btu/h @ 60 HZ)/12000

Ejemplo: un compresor que rinde 24.000 Btu/hr, [medidos en condiciones ASHRAE @ 60 Hz] es llamado un compresor de 2 HP.

Presión Comercial [CBP]

Capacidad en HP = (Capacidad frigorífica en Btu/h @ 60 HZ)/8000

Ejemplo: un compresor que rinde 4.000 Btu/hr, [medidos en condiciones ASHRAE @ 60 Hz] es llamado un compresor de 1/2 HP.

Baja Presión [LBP]

Capacidad en HP = (Capacidad frigorífica en Btu/h @ 60 HZ)/4000

Ejemplo: un compresor que rinde 1.000 Btu/hr, [medidos en condiciones ASHRAE @ 60 Hz] es llamado un compresor de 1/4 HP.

Sin embargo, los fabricantes de compresores se han desviado un poco de estas equivalencias y puesto que se obtienen mayores coeficientes de desempeño en la actualidad [COP] ("Coefficient of performance" por sus iniciales en inglés) para un mismo desplazamiento volumétrico del compresor, en la actualidad se han abandonado estas equivalencias atribuyéndose a los compresores valores en HP que no coinciden totalmente con estos criterios.

Es recomendable que los técnicos conozcan la capacidad frigorífica de un compresor al hacer un reemplazo por otro de otra marca o idealmente el desplazamiento volumétrico puesto que esto es lo que determina la verdadera equivalencia en cuanto a la aplicación determinada. Un mejor COP le permitirá reducir el consumo de energía, pero en lo que respecta al trabajo termodinámico, es mejor indicativo emplear el desplazamiento volumétrico o cilindrada al momento de tomar una decisión de sustitución de compresores.

• Tipos de motores herméticos de potencia fraccionaria.

Los motores eléctricos de estos compresores son del tipo monofásico, de inducción, de potencia fraccionaria (menor que ½ HP) y puede clasificarse por su forma de arrancar y posterior funcionamiento, en tres familias principales:

Motor Eléctrico

•Arranque por fase dividida:

RSIR [ por sus iniciales en inglés: "Resistance Start Induction Run" ] o PTCSIR [ por sus iniciales en inglés: "PTC Start Induction Run” ].

En estos casos se emplean uno u otro de los siguientes tipos de relé:

Relé amperométrico.

Relé "PTC" [por sus iniciales en inglés: Positive Temperatura Coefficient].

Relé voltimétrico. (Poco empleado en refrigeración doméstica pero sí en aire acondicionado).

Motores con torque normal de arranque, adecuados para aplicación en sistemas de refrigeración con dispositivo de control de flujo de refrigerante por tubo capilar, en los cuales las presiones alcanzan el equilibrio antes del arranque. El relé alimenta la bobina de arranque directamente hasta que la corriente en la bobina de marcha indica que el rotor ha alcanzado velocidad suficiente para generar su propio campo electromagnético rotativo que mantiene el movimiento.

Circuito de arranque RSIR.


+

Circuito de arranque PTCSIR.


• Arranque con capacitor: CSIR [por sus iniciales en inglés "Capacitor Start Induction Run"] o PTCCSIR [por sus iniciales en inglés: "PTC Capacitor Start Induction Run”].

Los relés son similares a los descritos precedentemente pero están dotados de contactos adicionales para la conexión del capacitor de arranque.

Motores con alto torque de arranque. Para lograrlo emplean un capacitor electrolítico conectado en serie con la bobina de arranque que solo se energizan durante los instantes en que está conectada esta bobina a través de los contactos del relé de arranque, tal como en el caso anterior.

Circuitos de arranque CSIR [con relé amperométrico y relé voltimétrico].

Son aptos para empleo en sistemas de refrigeración con dispositivo de control de flujo de refrigerante por tubo capilar o válvula de expansión, permitiendo el arranque aún cuando las presiones del sistema no hayan alcanzado el equilibrio.

• Con capacitor de marcha: PSC [por sus iniciales en inglés "Permanent Split Capacitor"].

Motores con torque normal de arranque. Utilizan un capacitor de marcha conectado en serie con la bobina de arranque, que se mantiene energizada; de esta manera la eficiencia del motor es superior a la de los motores RSIR. Se los emplea en aplicaciones con dispositivo de control de flujo de refrigerante por tubo capilar, donde las presiones del sistema alcanzan el equilibrio antes del arranque.

Circuito de arranque PSC.

• Arranque con capacitor, marcha con capacitor: CSR [por sus iniciales en inglés: Capacitor Start and Run].

Motores con alto torque de arranque. Emplean un capacitor de arranque y uno de marcha, conectados mediante un relé voltimetrito. Son aplicados en sistemas con dispositivo de control de flujo de refrigerante por tubo capilar o válvula de expansión en los cuales no se alcanza el equilibrio de presiones antes del arranque. Al igual que los motores PSC ofrecen un mejor nivel de eficiencia (menor consumo de corriente).

Circuito de arranque CSR.

Capacitores.

Capacitores.

Los motores eléctricos pueden ser asistidos con capacitores para mejorar su desempeño en ciertas condiciones.

Capacitor de arranque

Los capacitores de arranque son del tipo electrolítico, encapsulados en baquelita y sellados. Están diseñados para trabajar por cortos períodos de tiempo y sus valores de capacidad son expresados en microfaradios [µF]. Los capacitores de arranque se conectan en serie con la bobina de arranque y aportan energía sólo en el instante del arranque, después de lo cual deben ser

Capacitor de arranque

Los capacitores de arranque son del tipo electrolítico, encapsulados en baquelita y sellados.

Están diseñados para trabajar por cortos períodos de tiempo y sus valores de capacidad son expresados en microfaradios [µF]. Los capacitores de arranque se conectan en serie con la bobina de arranque y aportan energía sólo en el instante del arranque, después de lo cual deben ser excluidos del circuito (función que cumple el relé de arranque).

Su valor capacitivo (normalmente entre 50 y 300 µF) y voltaje (110 o 220 V) son determinados por el fabricante del compresor pues dependen del diseño de los bobinados del motor.

Capacitor de arranque

Capacitor de marcha.

Los capacitores de marcha son de polietileno encapsulados en plástico o metal. Están diseñados para funcionar continuamente. Normalmente se conectan en paralelo con la serie compuesta por el capacitor de arranque y su contacto de manera que al excluirse este, el capacitor de marcha continúe conectado en serie con la bobina de arranque. Su valor capacitivo es siempre inferior al del capacitor de arranque (entre 1 y 10 µF) y el voltaje también puede ser 110 o 220 V.

Ambos son del tipo no polarizado y se puede comprobar su estado mediante el empleo de un multímetro, en la escala de medición de resistencia eléctrica.


Capacitor de marcha.

Tres formas de Conectar un capacitor electrolítico.


Conexión Rápida

Conexión Atornillada

Conexión Soldada

Protector térmico

Protector térmico bimetálico externo tipo disco.

El protector térmico es un componente basado en un disco bimetálico que depende de los coeficientes de dilatación distintos de dos metales adheridos entre si, cuando estos dos metales son sometidos a cambios en la temperatura. Un disco troquelado de este material bimetálico (en el cual se han efectuado cortes y perforaciones cuidadosamente calculados para obtener una actuación precisa dentro de un rango de temperaturas de actuación al cual se han electrosoldado en una misma cara, cerca del diámetro exterior del disco dos contactos diametralmente opuestos), se sujeta a una cápsula, generalmente de bakelita o plástico, mediante un tornillo de calibración. Este tornillo es regulado en la fase final del proceso de fabricación para que el bimetálico reaccione deformándose hasta que, por tensión mecánica sus contactos se separan de los contactos fijos con un accionamiento brusco "snap", con el objeto de minimizar el chisporroteo de los contactos.


protector térmico

En la cápsula se han dispuesto dos contactos fijos y sus puntos de conexión al circuito de alimentación del compresor, así como una resistencia eléctrica en serie con el circuito, por detrás y a corta distancia del disco de tal manera que la corriente que circula por el compresor crea una temperatura que precalienta el disco. La forma de esta cápsula es tal que posiciona el disco a una distancia prefijada de la carcaza y lo protege de influencias térmicas externas.

Los protectores térmicos están basados en distintas combinaciones de pares de metales, distintas formas y tamaños de discos, distintas geometrías de los cortes y perforaciones y distintos valores de la resistencia de precalentamiento para lograr diferentes respuestas a combinaciones de consumo de corriente y temperatura radiada desde la carcaza.


Corte protector térmico.

Para un determinado compresor se hace una selección cuidadosa del protector térmico adecuado para que actúe cuando sea necesario, desconectando la alimentación por el tiempo que tarde el disco bimetálico en retomar su forma normal, que corresponde a la posición de contactos cerrados.

También es importante lo opuesto, o sea que no produzca interrupciones de funcionamiento innecesarias por demasiado tiempo, cuando la causa de incremento de temperatura es temporal y se corrige por sí misma (esto sucede, por ejemplo, cuando se carga el gabinete con productos cuya temperatura excede la temperatura ambiente). El gas en el evaporador adquiere más energía de lo normal y por lo tanto retorna al compresor con una temperatura mayor (aumenta lo que se llama "superheat" más de lo deseable); como consecuencia el gas que retorna al compresor lo hace a una temperatura más alta y temporalmente aumenta la temperatura en el interior de la carcaza. Este aumento de temperatura se transfiere a la carcaza y el protector térmico actúa. Al cabo de un tiempo, al bajar la temperatura de la mercancía, se restablecen las condiciones aceptables; la temperatura del gas de retorno desciende, el "superheat" retorna a sus valores normales y el gas, ya más frío lleva la temperatura en el interior de la carcaza a niveles dentro de lo que el protector percibe como normales y se restablece el funcionamiento normal. Mientras dura esta sobrecarga temporal, el compresor intentará arrancar y se detendrá en intervalos muy cortos (de alrededor de 1 minuto y a veces menos que eso, lo que es indeseable), pero al cabo de un tiempo prudencial, logra arrancar puesto que las presiones en el sistema se han equilibrado, y se reasume el funcionamiento controlado por el termostato.

El proceso de selección de un protector térmico para un determinado compresor se efectúa mediante un elaborado protocolo de pruebas de aplicación en laboratorio, donde se prueban un número de modelos de protectores para ese modelo de compresor, eliminando progresivamente aquellos modelos de protector térmico que fallan en alguna de las pruebas, y ajustando la selección de los restantes de acuerdo a los resultados precedentes hasta que se comprueba que un determinado tipo de protector térmico reacciona positivamente en todo el juego de pruebas.

Luego se realizan pruebas de comprobación en varias aplicaciones distintas. El objetivo es lograr que el dispositivo proteja al compresor contra sobrecargas que pongan en peligro, fundamentalmente, sus bobinados, para los cuales la temperatura máxima debe limitarse a lo que permite la clase térmica del esmalte empleado para aislar el alambre. En estas pruebas se diferencian aplicaciones según si el compresor es enfriado por convección o por aire forzado, de manera que dos compresores idénticos en cuanto a prestaciones, necesitan dos protectores térmicos distintos para que reaccionen ante un mismo fenómeno que afecte la temperatura de bobinados, cuando el modo de enfriamiento es distinto.

También se destaca la importancia que tiene el correcto posicionamiento del protector, fijado mecánicamente de modo que su cara abierta haga contacto en todo su contorno con la superficie de la carcaza y quede protegida de corrientes de aire que puedan enfriar el disco creando un entorno térmico que no refleja realmente la temperatura interna de la carcaza, con lo cual se reducirá su sensibilidad y efectividad.

Todos los protectores térmicos deben actuar ante cualquiera de la condiciones de trabajo del compresor que mencionaremos:

•Prueba de arranque desde reposo del artefacto "Pulldown."

El protector debe permitir que el compresor funcione bajo condiciones de carga severa. Típicamente, la carga más severa se produce en momentos de arranque desde reposo de una nevera

o congelador. Esta condición extrema se especifica como el arranque de un artefacto que ha permanecido a la máxima temperatura ambiente especificada para el ensayo (normalmente 43ºC). con la puerta abierta, durante 24 horas y, a partir de esta situación inicial, se cierra la puerta y se arranca el artefacto. Este debe partir y alcanzar las temperaturas especificadas de evaporación, congelación y conservación (según sea el caso), en un lapso de tiempo especificado. En estas condiciones, el protector no debe actuar (se permite un número limitado de actuaciones, siempre y cuando no se supere el límite de tiempo especificado) pero si debe observarse que las temperaturas críticas (bobinas, descarga, etc) no estén por encima de los límites de seguridad. La corriente máxima consumida en este proceso, la temperatura de carcaza y la temperatura ambiente presentes cuando el consumo de corriente es máximo, la máxima temperatura de carcaza durante el proceso y la corriente y temperatura del aire alrededor del térmico cuando la temperatura de carcaza es máxima, deben registrarse para una selección adecuada del tipo de elemento calentador y temperatura de actuación que impidan que el protector actúe en estas condiciones de trabajo.

Protector térmico de sobrecarga.

Protege al motor contra las fluctuaciones de la carga o de la tensión de la línea. Si por ejemplo la presión en el colector se hace rápidamente demasiado grande la sobre corriente podía ser demasiado elevada que llagaría a quemar el motor.

En otro lado, la tensión de línea demasiado reducida puede ser incapaz de hacer girar el motor, con lo que la corriente se hace excesiva al pararse y también puede quemar el motor. En ambos casos, el protector térmico se sobre carga evita esos accidentes.

El protector térmico esta constituido por 2 laminas circulares de metales diferentes coeficientes de dilatación y adheridos formando un solo disco. Cuando se aplica al disco una cantidad predeterminada de calor, se dobla en forma opuesta a la normal. Eso abre el circuito hasta que las condiciones térmicas se restablezcan , cuando la temperatura vuelve a su valor normal, el disco también vuelva su forma original, cierra el circuito y permite que se reanude el funcionamiento del motor.

Protector temicop de ¾ “ sin cordón

Protector temicop de ¾ “ con cordón

• Sobrecarga en condiciones de marcha." Running Overload ".

Hay dos condiciones de sobrecarga en marcha regular que pueden causar un calentamiento excesivo de los bobinados del motor y que pueden suceder con relativa facilidad: atascamiento del ventilador de condensación o detención de este por cualquier causa, o el flujo de aire bloqueado o que la puerta del gabinete quede abierta, provocando que el compresor opere continuamente.

Para impedir el sobrecalentamiento de las bobinas, debe registrarse la corriente que se consume en estas condiciones, así como las temperaturas de carcaza y del aire alrededor del protector cuando las bobinas alcanzan la temperatura crítica, que requiera que el protector actúe. Este punto determina el consumo máximo permitido por el fabricante del compresor

y el protector debe actuar, aún cuando la temperatura máxima de actuación no se haya alcanzado.

Rotor bloqueado. " Locked Rotor ".

La corriente con el rotor detenido es sumamente elevada y si se mantiene por un tiempo suficientemente prolongado (del orden de los 5 ~ 10 segundos) el bobinado auxiliar (arranque) se sobrecalentará y de persistir esta condición perderá su aislamiento. El protector debe actuar en pocos segundo y prevenir esta situación, aunque persista por un período de hasta 15 días (requerimiento de UL), y hacerlo manteniendo la temperatura de la carcaza por debajo de 150ºC (requerimiento de UL) mientras que la temperatura de bobinas debe mantenerse también por debajo del máximo permitido por el fabricante del compresor.

Esta prueba debe hacerse bajo tres condiciones extremas: tensión nominal, tensión mínima de trabajo aceptable y tensión máxima de trabajo aceptable para el compresor.

Para estas tres condiciones deben registrarse tanto la corriente consumida así como la velocidad a la que la temperatura de las bobinas aumenta. La corriente medida es la corriente que circula por el terminal "C" [común] del compresor. Si el relé asociado es del tipo electromecánico, se mide la corriente total. Si el relé es de tipo PTC, se mide la corriente total, el tiempo de reposición del relé PTC y la corriente de la bobina de marcha solamente. También se registra la corriente a la cual se desea que se produzca la apertura del protector. Se debe garantizar que el protector va a mantener la situación controlada dentro de límites durante el número de días especificados para el ensayo.

• Corte de la energía y reenganche. " Power Outage ".

Un caso particular de actuación en condiciones de rotor bloqueado se produce cuando se interrumpe la energía por un corto intervalo (segundos) y el relé empleado es PTC. Si el compresor estaba en funcionamiento antes del corte de energía, el compresor intentará arrancar cuando se repone el servicio eléctrico, pero el rotor no podrá girar debido a que la presión de descarga no ha alcanzado el nivel de equilibrio, en cuyo caso el protector actuará. En estas condiciones es necesario especificar cuánto tiempo es necesario que permanezca abierto el protector para que la pastilla del relé PTC tenga tiempo de enfriarse.

Todos los protectores térmicos mencionados poseen un contacto seco cerrado [NC], que debe abrirse, bajo carga inductiva, al producirse una condición de riesgo, perceptible como un aumento de temperatura. Esta apertura de contactos en esas condiciones, normalmente produce una pequeña chispa; tan pequeña como pueda hacerse con el diseño de la forma de los contactos, la velocidad de reacción del disco "snap action", puesto que su efecto es también dañino para la vida útil del contacto, y por ende del protector (10.000 ciclos), pero inevitable. Es por ello que para que un compresor pueda ser clasificado como apto para trabajar con refrigerantes clasificados como inflamables, tales como los hidrocarburos [HC], este dispositivo debe ser encapsulado herméticamente, para evitar el riesgo de explosión.

La detallada explicación precedente tiene por objeto enfatizar la importancia que tiene el protector térmico para el compresor, tanto en lo que respecta a su selección como a su colocación en el compresor. El técnico debe entender, por lo dicho aquí, que si bien todos los térmicos son aparentemente iguales, su respuesta es distinta para cada modelo y no se debe sustituir arbitrariamente por otro similar sino por otro idéntico, si se pretende que cumpla su función. Un térmico que no corresponde a una aplicación determinada (por ejemplo un térmico para un modelo de compresor enfriado por convección natural o por intercambiador de calor sumergido en el aceite, no protegerá adecuadamente a un compresor enfriado por ventilador porque las pruebas de desarrollo no se hicieron en esas condiciones). Habrá, arbitrariamente, o sobreprotección (creando paradas innecesarias) o protección insuficiente (que permitirá que las temperaturas de bobinas excedan lo permitido por su clase térmica, con la consiguiente aceleración del proceso de envejecimiento prematuro del esmalte y reducción correspondiente de la vida útil del compresor.

La correcta colocación es también de fundamental importancia pues solo actuará debidamente si se lo instala en las mismas condiciones en que se efectuaron las pruebas de desarrollo, tal como se lo describió en párrafo precedente.

Es común observar neveras, congeladores y todo tipo de artefactos en los cuales la tapa de protección de las conexiones eléctricas se encuentra suelta, sin sujetador o simplemente no está. Esta tapa de terminales también cubre el protector térmico y lo mantiene sujeto en la posición determinada por el fabricante del compresor, de manera que reproduzca las condiciones de montaje durante las pruebas de desarrollo.

También es posible ver un número de casos, particularmente después de una llamada de servicio técnico, en que el protector térmico es dejado expuesto al aire libre intencionalmente para evitar que actúe.

Estas dos situaciones deben evitarse pues en esas condiciones el dispositivo no puede cumplir con su funcionamiento, respondiendo solo a condiciones extremas, tales como un cortocircuito o puesta a tierra de uno a ambas bobinas y en tal caso, ya es tarde para salvar el compresor.

El protector térmico puede evitar un cambio de compresor innecesario, si interpretamos su actuación como una herramienta de diagnóstico de la presencia de condiciones de funcionamiento anormales (que pueden ser temporales, como dijimos más arriba) pero que en muchos casos ponen en evidencia situaciones que, de ser corregidas a tiempo, mantendrán el compresor trabajando en condiciones seguras por todo el tiempo que se espera funcione.

No solo protege al compresor contra operación incorrecta de componentes del circuito en que está operando (tanto del circuito eléctrico como del circuito

de refrigeración), sino que también actúa en respuesta a intentos de arranque o para evitar que funcione cuando la tensión en bornes está fuera del rango admisible, puesto que esto incrementa el consumo de corriente, que aumenta la temperatura que irradia la resistencia colocada en la cápsula detrás del disco, lo que provoca la actuación del protector.

Puesto que es un dispositivo de reposición automática, una vez que actúa, se repondrá y repetirá su trabajo mientras se mantengan las condiciones adversas o fuera de límites de trabajo normal; según la especificación de selección ya mencionada. En cuanto se detecte que la nevera o congelador ha comenzado a trabajar de esta manera (ciclando por activación del protector térmico), es una buena medida que el usuario intervenga, desconectando el artefacto, puesto que se dará cuenta que este no tiempo de reacción y corriente de accionamiento a lo largo de la vida útil del protector, menores variaciones de temperatura de accionamiento a todo lo largo de los ciclos de disparo previstos para toda al vida útil del protector, tiempos de reposición del disco más largos, ideales para permitir que la pastilla del relé PTC se enfríe y excelente resistencia mecánica y choques térmicos. Se fabrican con equipos totalmente automatizados y su calibración no depende de ajustes mecánicos. Su diseño es mucho más compacto y facilita la operación de su montaje puesto que no requiere arnés ni sujetador para ello y su posición es única de manera que es imposible que se lo posiciones incorrectamente, evitando este riesgo.

Protector térmico bimetálico montado en el conector del compresor.

Existe una versión de protectores térmicos más modernos, que operan con los mismos principios ya descritos para los protectores tipo disco, desarrollados, principalmente, para ser empleado en conjunto con relés tipo PTC, aunque el fabricante lo ha diseñado para funcionar con cualquier relé, incluso los convencionales (amperimétricos). Estos dispositivos reciben las señales de temperatura provenientes de la carcaza, el elemento calefactor eléctrico (por el que pasa la corriente de ambos bobinados), la temperatura ambiente y la temperatura interna de la carcaza a través del pin común [C] del conector del compresor puesto que van enchufados directamente en este. Tienen la ventaja de que el disco bimetálico responsable de actuar ante un aumento de temperatura no forma parte del circuito eléctrico, por lo que se obtiene mejor repetitividad de actuación del protector en cuanto a compresor innecesario, si interpretamos su actuación como una herramienta de diagnóstico de la presencia de condiciones de funcionamiento anormales (que pueden ser temporales, como dijimos más arriba) pero que en muchos casos ponen en evidencia situaciones que, de ser corregidas a tiempo, mantendrán el compresor trabajando en condiciones seguras por todo el tiempo que se espera funcione.

No solo protege al compresor contra operación incorrecta de componentes del circuito en que está operando (tanto del circuito eléctrico como del circuito de refrigeración), sino que también actúa en respuesta a intentos de arranque o para evitar que funcione cuando la tensión en bornes está fuera del rango admisible, puesto que esto incrementa el consumo de corriente, que aumenta la temperatura que irradia la resistencia colocada en la cápsula detrás del disco, lo que provoca la actuación del protector.

Protector térmico para Vistas en Corte montaje en conector


Protectores térmicos internos.

Algunos compresores emplean protectores térmicos bimetálicos encapsulados, montados en contacto directo con los bobinados del motor y que reaccionan cuando la temperatura de la bobina a la cual está sujeto el protector alcanza la temperatura de apertura. Como puede verse, tienen la ventaja de que actúan mucho más rápidamente que los exteriores, descritos en los párrafos anteriores y en su gran mayoría son empleados en motores de compresores abiertos y solo en contados compresores herméticos puesto que si este elemento llegase a fallar por razones propias o por cualquier otra circunstancia en un compresor hermético, sería imposible de sustituir sin abrir el compresor, lo cual no es aceptado por el fabricante ni recomendado bajo ninguna circunstancia. Sin embargo, los fabricantes que han decidido incorporarlos lo hacen porque consideran que su nivel de confiabilidad es tal que su uso en estas aplicaciones no influenciará la vida útil del compresor.


Protectores térmicos internos.

•Selección del protector térmico (externo).

El protector térmico viene identificado por una serie de números y letras que indican datos que es necesario conocer y utilizar para su sustitución (supuesto que no haya sido cambiado previamente por un técnico en un servicio anterior por uno parecido). Si se puede confirmar, a través del catálogo del fabricante, el modelo de protector, se le debe sustituir por otro cuyo código sea exactamente igual, excepto, quizás por los dos últimos números, dado que ellos indican el tipo de conexiones externas: normalmente pala macho de 6,35 mm (¼") de ancho, diferenciándose cuando el protector lleva una conexión extra para alimentar desde allí el ventilador, en caso de que se trate de una aplicación que requiera aire forzado.

Relé PTC.

Relé PTC.

El funcionamiento de este relé, introducido mucho después del relé amperométrico, es electrotérmico y no posee piezas en movimiento ni bobinado por lo que es mucho más confiable que su antecesor; su único componente pasivo es una pastilla de material cerámico que posee la propiedad de aumentar su resistencia eléctrica cuando es calentado por el paso de una corriente a través de él. Esta pastilla está conectada a los terminales del relé que conectan, por un lado a la línea de alimentación y por el otro al borne [A], correspondiente a la bobina de arranque. El relé alimenta directamente a la bobina de marcha a través del borne [R].



Inicialmente, la pastilla del PTC estará a temperatura ambiente y su resistencia es baja de modo que está en condiciones de dejar pasar una corriente sin impedimentos a través de sí misma. Cuando el circuito de control del artefacto (termostato) cierra el circuito de alimentación eléctrica del compresor, la tensión presente aplicada al terminal L2 del relé produce una circulación de corriente a través de la bobina de marcha y simultáneamente a través de la serie de la pastilla del relé PTC y la bobina de arranque y que cierra el circuito a través del protector térmico, en cuyo Terminal L1 se conecta la otra línea de alimentación. En estas condiciones, como se explicó anteriormente, el motor gira y la corriente que pasa a través de la pastilla del PTC calienta a esta rápidamente por el calor generado por la corriente de arranque Ir2 x RPTC, con el efecto de un rápido aumento de la resistencia de la pastilla del PTC hasta el punto que permite el paso de una corriente muy reducida, que puede considerarse despreciable.





Corte mostrando construcción interna PTC.

Su utilización es muy común en compresores de diseño reciente de baja capacidad, destinados a aplicaciones donde el tiempo entre ciclos de operación sea lo suficientemente largo para que la pastilla del PTC se enfríe y quede lista para un nuevo ciclo (mínimo 1 minuto).

El tiempo de reposición del protector térmico, determinado en fábrica en función del tiempo que necesitan los bobinados del motor para que su temperatura baje a niveles seguros, es también crítico pues en caso de relé PTC debe tomarse en cuenta el tiempo que necesita la pastilla cerámica para reducir su resistencia que, como dijimos, debe ser de más de un minuto.

Es por ello que en algunos casos, intentar sustituir un relé amperométrico con un relé PTC puede no ser exitoso, en aquellos casos en que el tiempo de reposición del protector calculado para ese compresor para ser usado en conjunto con un relé amperométrico, sea muy corto.

• Selección de relé PTC.

La selección del relé tipo PTC es menos compleja pues existen muchos menos tipos distintos para adaptar a un gran número de compresores distintos. El factor determinante es el tiempo requerido por la pastilla para recuperar su valor de resistencia eléctrica inicial, una vez que se ha interrumpido el paso de corriente por ella y se ha enfriado y la capacidad de corriente que maneja. Ello se logra con un número relativamente pequeño de pastillas, que varían en su resistencia eléctrica, para distintas tensiones de aplicación (120 / 240) y diferentes valores de tensión máxima / intensidad de corriente máxima [Vmax/Imax].

Consideraciones particulares para relés PTC

. La superficie y terminales del relé pueden alcanzar altas temperaturas en condiciones normales de operación.

Cualquier material que esté en contacto con el relé, incluyendo cables y aislamiento de los cables de los accesorios vinculados (capacitor, ventilador, protector térmico) deben ser clase térmica 105ºC y debe evitarse el contacto con materiales cuya clase térmica sea inferior.

. El relé tipo PTC debe estar protegido de fuentes potenciales de salpicadura de líquidos, tal como la bandeja de evaporación del agua de descongelación o las conexiones de alimentación de agua en las aplicaciones que tengan servicio de alimentación de agua externa.

. Ciertos materiales, tales como gases clorados CFC y CHFC pueden degradar las características de la pastilla del PTC. Este dispositivo no debe ser expuesto a gases clorados o sulfurados ni a materiales que puedan generarlos. En particular, evite emplear aislamiento basado en policloruro de vinilo [PVC] en contacto con los terminales del relé.

. El relé PTC debe estar protegido por una cubierta de protección contra posibles contactos humanos durante su empleo.


RELE DE TENSIÓN.

RELE DE TENSIÓN o RELE DE VOLTAJE.

También se le conoce como relevador voltimetrico.

Son empleados en aplicaciones comerciales que empleen compresores que requieran capacitores de arranque y marcha en el circuito de alimentación del motocompresor. La bobina del relé se conecta en paralelo con la bobina de arranque del motor eléctrico y sus contactos, normalmente cerrados [NC] se emplean para desconectar el capacitor de arranque.

La tensión en la bobina de arranque aumenta a medida que lo hace la velocidad del motor, hasta alcanzar el valor necesario para atraer la armadura del relé lo cual acciona los contactos, abriéndolos. La tensión inducida en la bobina de arranque por el campo electromagnético del motor en funcionamiento continúa atrayendo la armadura, manteniendo los contactos abiertos. El capacitor de marcha [permanente] se conecta en paralelo con la serie del relé de arranque y los contactos NC.


Solo se emplea en los motores con condensador de arranque, sus contactos están normalmente cerrados, de manera que en los pocos segundos iniciales del arranque, el mismo y el condensador permanece conectados. Cuando el motor empieza a alcanzar su velocidad, una corriente excita a una bobina. Cuando la velocidad del motor es del orden del 85 % de la nominal, la corriente inducida en el relé es lo suficientemente elevada como para abrir los contactos normalmente cerrados, con lo que se abre el circuito del condensador de arranque.


RELE DE TENSIÓN o RELE DE VOLTAJE.




RELE DE TENSIÓN o RELE DE VOLTAJE.



También se le conoce como relevador voltimetrico.